11 research outputs found

    Feature detection algorithms in computed images

    Get PDF
    The problem of sensing a medium by several sensors and retrieving interesting features is a very general one. The basic framework of the problem is generally the same for applications from MRI, tomography, Radar SAR imaging to subsurface imaging, even though the data acquisition processes, sensing geometries and sensed properties are different. In this thesis we introduced a new perspective to the problem of remote sensing and information retrieval by studying the problem of subsurface imaging using GPR and seismic sensors. We have shown that if the sensed medium is sparse in some domain then it can be imaged using many fewer measurements than required by the standard methods. This leads to much lower data acquisition times and better images representing the medium. We have used the ideas from Compressive Sensing, which show that a small number of random measurements about a signal is sufficient to completely characterize it, if the signal is sparse or compressible in some domain. Although we have applied our ideas to the subsurface imaging problem, our results are general and can be extended to other remote sensing applications. A second objective in remote sensing is information retrieval which involves searching for important features in the computed image of the medium. In this thesis we focus on detecting buried structures like pipes, and tunnels in computed GPR or seismic images. The problem of finding these structures in high clutter and noise conditions, and finding them faster than the standard shape detecting methods like the Hough transform is analyzed. One of the most important contributions of this thesis is, where the sensing and the information retrieval stages are unified in a single framework using compressive sensing. Instead of taking lots of standard measurements to compute the image of the medium and search the necessary information in the computed image, a much smaller number of measurements as random projections are taken. The data acquisition and information retrieval stages are unified by using a data model dictionary that connects the information to the sensor data.Ph.D.Committee Chair: McClellan, James H.; Committee Member: Romberg, Justin K.; Committee Member: Scott, Waymond R. Jr.; Committee Member: Vela, Patricio A.; Committee Member: Vidakovic, Bran

    Performance Analysis of Compressive-Sensing-Based Through-the-Wall Imaging with Effect of Unknown Parameters

    Get PDF
    Compressive sensing (CS) has been shown to be a useful tool for subsurface or through-the-wall imaging (TWI) using ground penetrating radar (GPR). It has been used to decrease both time/frequency or spatial measurements and generate high-resolution images. Although current works apply CS directly to TWI, questions on the required number of measurements for a sparsity level, measurement strategy to subsample in frequency and space, or imaging performance in varying noise levels and limits on CS range resolution performance still needs to be answered. In addition current CS-based imaging methods are based on two basic assumptions; targets are point like and positioned at only discrete grid locations and wall thickness and its dielectric constant are perfectly known. However, these assumptions are not usually valid in most TWI applications. This work extends the theory of CS-based radar imaging developed for subsurface imaging to TWI and outlines the performance of the proposed imaging for the above-mentioned questions using numerical simulations. The effect of unknown parameters on the imaging performance is analyzed, and it is observed that off-the-grid point targets and big modeling errors decreases the performance of CS imaging

    Perturbed Orthogonal Matching Pursuit

    No full text

    High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks

    No full text
    This paper presents a learning-based, physics-aware soil moisture (SM) retrieval algorithm for NASA’s Cyclone Global Navigation Satellite System (CYGNSS) mission. The goal of the proposed novel method is to advance CYGNSS-based SM estimations, exploiting the spatio-temporal resolution of the GNSS reflectometry (GNSS-R) signals to its highest potential within a machine learning framework. The methodology employs a fully connected Artificial Neural Network (ANN) regression model to perform SM predictions through learning the nonlinear relations of SM and other land geophysical parameters to the CYGNSS observables. In situ SM measurements from several International SM Network (ISMN) sites are used as reference labels; CYGNSS incidence angles, derived reflectivity and trailing edge slope (TES) values, as well as ancillary data, are exploited as input features for training and validation of the ANN model. In particular, the utilized ancillary data consist of normalized difference vegetation index (NDVI), vegetation water content (VWC), terrain elevation, terrain slope, and h-parameter (surface roughness). Land cover classification and inland water body masks are also used for the intermediate derivations and quality control purposes. The proposed algorithm assumes uniform SM over a 0.0833 ∘ × 0.0833 ∘ (approximately 9 km × 9 km around the equator) lat/lon grid for any CYGNSS observation that falls within this window. The proposed technique is capable of generating sub-daily and high-resolution SM predictions as it does not rely on time-series or spatial averaging of the CYGNSS observations. Once trained on the data from ISMN sites, the model is independent from other SM sources for retrieval. The estimation results obtained over unseen test data are promising: SM predictions with an unbiased root mean squared error of 0.0544 cm 3 /cm 3 and Pearson correlation coefficient of 0.9009 are reported for 2017 and 2018

    Hyperspectral target detection - An experimental study

    No full text
    In hyperspectral imaging, the measured spectra are affected by the materials and objects that reside within or in close vicinity of the pixel which is being imaged. The detection of a material or object of interest in an imaged region is a common problem in various application areas. In this work, an experimental study is performed for target detection in hyperspectral images, supported by a performance comparison

    Evaluations of Machine Learning-Based CYGNSS Soil Moisture Estimates against SMAP Observations

    No full text
    This paper presents a machine learning (ML) framework to derive a quasi-global soil moisture (SM) product by direct use of the Cyclone Global Navigation Satellite System (CYGNSS)’s high spatio-temporal resolution observations over the tropics (within ±38° latitudes) at L-band. The learning model is trained by using in-situ SM data from the International Soil Moisture Network (ISMN) sites and various space-borne ancillary data. The approach produces daily SM retrievals that are gridded to 3 km and 9 km within the CYGNSS spatial coverage. The performance of the model is independently evaluated at various temporal scales (daily, 3-day, weekly, and monthly) against Soil Moisture Active Passive (SMAP) mission’s enhanced SM products at a resolution of 9 km × 9 km. The mean unbiased root-mean-square difference (ubRMSD) between concurrent (same calendar day) CYGNSS and SMAP SM retrievals for about three years (from 2017 to 2019) is 0.044 cm3 cm−3 with a correlation coefficient of 0.66 over SMAP recommended grids. The performance gradually improves with temporal averaging and degrades over regions regularly flagged by SMAP such as dense forest, high topography, and coastlines. Furthermore, CYGNSS and SMAP retrievals are evaluated against 170 ISMN in-situ observations that result in mean unbiased root-mean-square errors (ubRMSE) of 0.055 cm3 cm−3 and 0.054 cm3 cm−3, respectively, and a higher correlation coefficient with CYGNSS retrievals. It is important to note that the proposed approach is trained over limited in-situ observations and is independent of SMAP observations in its training. The retrieval performance indicates current applicability and future growth potential of GNSS-R-based, directly measured spaceborne SM products that can provide improved spatio-temporal resolution than currently available datasets

    Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS

    No full text
    Soil moisture (SM) derived from satellite-based remote sensing measurements plays a vital role for understanding Earth’s land and near-surface atmosphere interactions. Bistatic Global Navigation Satellite System (GNSS) Reflectometry (GNSS-R) has emerged in recent years as a new domain of microwave remote sensing with great potential for SM retrievals, particularly at high spatio-temporal resolutions. In this work, a machine learning (ML)-based framework is presented for obtaining SM data products over the International Soil Moisture Network (ISMN) sites in the Continental United States (CONUS) by leveraging spaceborne GNSS-R observations provided by NASA’s Cyclone GNSS (CYGNSS) constellation alongside remotely sensed geophysical data products. Three widely-used ML approaches—artificial neural network (ANN), random forest (RF), and support vector machine (SVM)—are compared and analyzed for the SM retrieval through utilizing multiple validation strategies. Specifically, using a 5-fold cross-validation method, overall RMSE values of 0.052, 0.061, and 0.065 cm3/cm3 are achieved for the RF, ANN, and SVM techniques, respectively. In addition, both a site-independent and a year-based validation techniques demonstrate satisfactory accuracy of the proposed ML model, suggesting that this SM approach can be generalized in space and time domains. Moreover, the achieved accuracy can be further improved when the model is trained and tested over individual SM networks as opposed to combining all available SM networks. Additionally, factors including soil type and land cover are analyzed with respect to their impacts on the accuracy of SM retrievals. Overall, the results demonstrated here indicate that the proposed technique can confidently provide SM estimates over lightly-vegetated areas with vegetation water content (VWC) less than 5 kg/m2 and relatively low spatial heterogeneity
    corecore